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a b s t r a c t

Long-term visibility measurements offer useful information for aerosol and climate change studies.
Recently, a new technique to converting visibility measurements to aerosol optical depth (AOD) has been
developed on a station-to-station basis (Lin et al., 2014). However, factors such as human observation
differences and local meteorological conditions often impair the spatial consistency of the visibility
converted AOD dataset. Here we further adopt AOD spatial information from a chemical transport model
GEOS-Chem, and merge visibility inferred and modeled early-afternoon AOD over East China on a 0.667�

long. � 0.5� lat. grid for 2005e2012. Comparisons with MODIS/Aqua retrieved AOD and subsequent
spectral decomposition analyses show that the merged dataset successfully corrects the low bias in the
model while preserving its spatial pattern, resulting in very good agreement with MODIS in both
magnitude and spatio-temporal variability. The low bias is reduced from 0.10 in GEOS-Chem AOD to 0.04
in the merged data averaged over East China, and the correlation in the seasonal and interannual vari-
ability between MODIS and merged AOD is well above 0.75 for most regions. Comparisons between the
merged and AERONET data also show an overall small bias and high correlation. The merged dataset
reveals four major pollution hot spots in China, including the North China Plain, the Yangtze River Delta,
the Pearl River Delta and the Sichuan Basin, consistent with previous works. AOD peaks in spring-
summer over the North China Plain and Yangtze River Delta and in spring over the Pearl River Delta,
with no distinct seasonal cycle over the Sichuan Basin. The merged AOD has the largest difference from
MODIS over the Sichuan Basin. We also discuss possible benefits of visibility based AOD data that correct
the sampling bias in MODIS retrievals related to cloud-free sampling and misclassified heavy haze
conditions.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Surface visibility measurements can be used to infer aerosol
pollution (Noll et al., 1967; White and Roberts, 1977; Park et al.,
2006), and because visibility has been routinely monitored for
decades at many locations, they could be potentially useful in
studying long-term aerosol trends. Therefore, many attempts have
been made to estimate aerosol loadings from visibility data (e.g.
Husar et al., 2000; Qian and Giorgi, 2000; Che et al., 2007; Vautard
et al., 2009; Qin et al., 2010;Wang et al., 2009, 2012). Most previous
studies assumed exponentially decreasing aerosol vertical profiles
with a fixed scale height when converting surface measurements to
column aerosol optical depth (AOD). More recently, a study by Lin
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et al. (2014) took advantage of aerosol vertical distribution simu-
lated by the nested GEOS-Chem chemical transport model (CTM) to
yield more realistic AOD estimation. Initial point-by-point com-
parison with validated MODIS AOD data at individual stations
indicated satisfying agreement in both the magnitude and seasonal
cycle. Nonetheless, as visibility measurements are only available
from scattered stations, the converted AOD lacks sufficient spatial
coverage. Moreover, because visibility measurements are subjec-
tive to human errors, and that the datamay be affected by very local
meteorological or pollution conditions, the consistency in spatial
variability is relatively low between visibility converted AOD and
MODIS. In other words, the visibility dataset alone may not well
reflect the spatial variation of aerosols that is necessary for long-
term climate forcing studies. This limitation may be overcome by
taking advantage of the spatial variability simulated by CTMs.

Driven by emissions and meteorological inputs, CTMs simulate
chemical, transport and deposition processes of gaseous and
aerosol constituents in the atmosphere. Driven by assimilated
meteorological fields, the GEOS-Chem CTM has been shown to
capture the major aerosol variability (Bey et al., 2001; van
Donkelaar et al., 2013; Zhang et al., 2015). However, modeled
AOD may have certain biases due to errors in emissions, chemical
mechanisms, and/or meteorological inputs. For example, Heald
et al. (2006) showed that on average GEOS-Chem AOD is lower
than MODIS by a factor of two over the Pacific and continental US.
Our previous study (Lin et al., 2014) and present analysis (see
Section 3) also show GEOS-Chem underestimates MODIS AOD over
China.

Because visibility converted AOD lacks adequate spatial infor-
mationwhile GEOS-Chem AOD suffers from biases, it is rationale to
combine the strengths of these two datasets for improved spatial
variability and accuracy. For this reason, we used a simple 2-D
interpolation method to merge the visibility converted AOD with
GEOS-Chem simulated AOD. This new dataset corrects the low bias
in GEOS-Chem AOD while preserving its consistent spatial infor-
mation; it is thusmore suitable for climatological studies, especially
during periods when no satellite data are available.

In this study, we evaluate the spatial-temporal variability of the
merged AOD at 550 nm over East China (101.25�Ee126.25�E,
19�Ne46�N) from 2005 to 2012. Monthly mean data for the early
afternoon (at the MODIS/Aqua overpass time) are derived from
daily data and are analyzed here. Section 2 introduces the visibility
converted AOD over 2005e2012, the corresponding GEOS-Chem
AOD, and the method used to merge the two datasets. A compar-
ison to AERONET data is also given. Section 3 presents the merged
dataset and comparison with MODIS/Aqua AOD in terms of spatial
and temporal variability. Section 4 briefly discusses the data sam-
pling issues relevant to the merged and MODIS data for aerosol
inference. A summary is given in Section 5.

2. Data and methodology

2.1. Visibility converted AOD

We convert the visibility data to AOD at 550 nm at 253 stations
over East China from January 2005 through December 2012. The
conversion methodology is presented in detail by Lin et al. (2014).
Briefly, near surface Aerosol Extinction Coefficient (AEC) is first
calculated from a quality-controlled 3-hourly visibilitymeasurement
in the absence of precipitation and fogs, then a temporally and
spatially coincident AOD to AEC ratio modeled by GEOS-Chem is
used to convert near surface AEC to column AOD. In this way, the
knowledge of model aerosol profile is involved, instead of assuming
a uniform exponential vertical distribution. The resulting AOD
product is thus more realistic. Here, we calculate for each day
visibility converted AOD in the early afternoon, by linearly interpo-
lating the 3-hourly data to the MODIS/Aqua overpass time. The
station-specific visibility converted AOD in 2006 is validated with
MODIS data and ground-based AOD measurements by Lin et al.
(2014).

2.2. GEOS-Chem AOD

GEOS-Chem simulates the AOD at 550 nm over 2005e2012 with
a model spin-up period in 2004. Model results are outputted every
day at the MODIS/Aqua overpass time. The model setups are
described in detail by Lin et al. (2015). Briefly, we use the nested
GEOS-Chem version 9-02 over Asia (Chen et al., 2009) at 0.667�

long.� 0.5� lat. with 47 vertical layers and 10 roughly equal-spaced
layers below 850 hPa. The model is driven by the GEOS-5 assimi-
lated meteorology, and it is run with the full gaseous chemistry
(Mao et al., 2013) and online aerosol calculations. Aerosols simu-
lated include sulfate-nitrate-ammonium particles (Park et al.,
2004), black carbon and primary organic carbon (Park et al.,
2003; Wang et al., 2011a), natural dusts (Fairlie et al., 2007), and
sea salts (Jaegl�e et al., 2011). Aerosol optical properties account for
the hygroscopic growth; see Drury et al. (2010) for detailed de-
scriptions. Vertical mixing in the boundary layer follows a non-local
scheme implemented by Lin and McElroy (2010), and convection
adopts the relaxed Arakawa-Schubert scheme (Rienecker et al.,
2008).

Anthropogenic emissions of nitrogen oxides (NOx), carbon
monoxide, non-methane volatile organic compounds (NMVOCs)
and sulfur dioxide are taken from the MEIC inventory (www.
meicmodel.org, base year is 2008) over China and from the
INTEX-B inventory (Zhang et al., 2009, base year is 2006) for other
Asian countries. Anthropogenic emissions of black carbon and
primary organic carbon are from INTEX-B. Anthropogenic emis-
sions of ammonia over China are from Huang et al. (2012) (base
year is 2008) and from Streets et al. (2003) for other Asian counties
(base year is 2000). Chinese anthropogenic NOx emissions are
scaled from the base year to other years according to the DOMINO
v2 satellite nitrogen dioxide data (Boersma et al., 2011). No inter-
annual variations are applied to anthropogenic emissions for other
species and/or regions due to lack of information. Biomass burning
emissions are taken from the monthly GFED v3 dataset (van der
Werf et al., 2010). Biogenic emissions of NMVOCs follow MEGAN
v2 (Guenther et al., 2012). Soil emissions of NOx follow Hudman
et al. (2011). Lightning emissions of NOx are parameterized based
on cloud top heights (Price and Rind, 1992) with a further adjust-
ment according to the OTD/LIS satellite measurements (Murray
et al., 2012). Dust particles are emitted with the DEAD scheme
(Fairlie et al., 2007), and emissions of sea salts are parameterized by
Jaegl�e et al. (2011).

2.3. Merging visibility converted AOD and GEOS-Chem AOD

We combine visibility converted and GEOS-Chem simulated
AOD to produce a new “merged” AOD dataset on a 0.667�

long. � 0.5� lat. grid. For each day, we find for a given grid cell all
stations within a 2� radius of the grid cell center (see Fig. 1a for
station counts corresponding to each model grid box), calculate the
ratios of visibility converted over GEOS-Chem AOD, and then use
the median value of the ratios to scale the modeled AOD at the grid
cell. We discard extreme cases where the median ratio is above 5 or
below 0.2, or where the resulting merged AOD exceeds a value of 5.

The monthly average merged AOD is consistent with the AER-
ONET data (Holben et al., 1998) with a small bias and high corre-
lation. We select all five AERONET sites within the study domain
that have at least two years of data, including Beijing, Xianghe,

http://www.meicmodel.org
http://www.meicmodel.org


Fig. 1. Number of stations within a 2� radius of each grid cell (a), and multi-year mean visibility converted AOD (b), GEOS-Chem AOD (c), merged AOD (d) and MODIS AOD (e). It is
clearly seen that the merged AOD largely correct the low bias in GEOS-Chem AOD. The boxes in (e) mark the key regions for further examination, including the North China Plain
(black), the Yangtze River Delta (blue), the Pearl River Delta (magenta), and the Sichuan Basin (red).
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Hong Kong PolyU, Taihu, and SACOL (Huang et al., 2008). The
geographic information of these sites is depicted in Fig. 2. We
collect the level 2 quality-assured AERONET data from the official
web page (http://aeronet.gsfc.nasa.gov/), and then derive the AOD
data at 550 nm from values at 440 nm using the accompanying
Ångstrom exponent data for 440e675 nm (Lin et al., 2014). For
comparison, the daily merged AOD data at the grid cell covering a
given site are sampled coincidently with valid AERONET data, fol-
lowed by an averaging process to derive monthly means. Fig. 2
shows that the monthly average merged AOD data reproduce the
seasonal and interannual variations of AERONET data for most sites
(R ¼ 0.68e0.81) but SACOL (R ¼ 0.35). At Beijing, Xianghe, Hong
Kong PolyU and Taihu, the merged AOD captures the spring-
summer highs and wintertime lows of AERONET data fairly well.
The merged data underestimate the seasonal AERONET peaks over
2006e2008 at Xianghe; however, these AERONET peaks are not
clearly shown in the nearby Beijing site, indicating a potential local
influence not expected to be captured by the merged dataset. The
low consistency at SACOL, located in a semi-arid region (Huang
et al., 2008), is related to the dusty environment with an
increased difficulty in converting near-surface visibility to AOD.
Overall, the merged AOD biases are only þ0.02 at Beijing, �0.06 at
Xianghe, �0.01 at Hong Kong PolyU, �0.11 at Taihu, and þ0.05 at
SACOL. The underestimate at Taihu is contributedmainly by a slight
systematic bias over 2005e2008.

Currently there are only a few AERONET sites with multi-year
data for our evaluation. Further site-specific evaluation can be
done by comparison with Chinese ground-based AOD networks
CARSNET (Che et al., 2009) and CSHNET (Xin et al., 2007), when
these data become available to allow for a spatio-temporally
comprehensive ground-based data base. Our previous study (Lin
et al., 2014) have shown very good quality in MODIS/Aqua Collec-
tion 5.1 data over East China by comparison with ground-based
AERONET, CARSNET and CSHNET data in 2006 (bias ¼ �0.05
or �10%, R ¼ 0.85, across a total of 26 sites). Therefore in the
following sections, we will use a gridded MODIS/Aqua AOD dataset
to conduct more comprehensive evaluation of the spatio-temporal
variability of the merged data.
2.4. MODIS/aqua AOD

Collection 5.1 level 2 AOD product at 550 nm fromMODIS/Aqua
(Levy et al., 2007, 2010) are used to evaluate the merged AOD
product. Our previous analysis (Lin et al., 2014) showed that the
MODIS/Aqua data are consistent with ground-based AERONET,
CARSNET and CSHNET networks over East China in 2006, with a
low bias (�0.05 or �10%) and a high correlation coefficient (0.85)
across a total of 26 sites, consistent with the findings of other works
(Wang et al., 2010, 2013b). For each day, we map the nominal
10 km � 10 km level 2 pixels to the 0.667� long. � 0.5� lat. grid to
match GEOS-Chem and merged AOD.

3. Spatio-temporal variability of gridded merged AOD

This section analyzes the spatial and temporal variability of
aerosol loadings over East China using the gridded merged dataset,
complemented by a comparison with MODIS. We further use
Combined Principal Component Analysis (CPCA, Li et al., 2014) to
examine the spatio-temporal coherency with MODIS data.

We compare the merged AOD to the MODIS data on a monthly
mean basis. We average the daily data to derive monthly means.
The merged AOD is available for about 86% of the days on average
(except when the visibility data are missing or discarded at the
data processing step), while MODIS data are only for cloud-free
situations. To correct for the sampling difference in comparing
with MODIS, we calculate the difference for each day between
modeled AOD coincident with the merged data and with MODIS
data, and then use the monthly average of these daily differences
to adjust the monthly mean merged AOD. A similar procedure is
done for visibility converted AOD data. All data presented in this
section are based on the MODIS sampling. In Section 4, we will
further discuss the sampling bias relevant to the spatio-temporal
analysis.

3.1. Annual mean, seasonal variation and time series

Fig. 1 shows the multi-year average of the station-specific visi-
bility converted AOD (Fig. 1b) over East China. While the visibility
AOD data display a rough spatial pattern, e.g., higher over the
eastern regions and lower over the west and northwest, there are
clear inconsistencies in the AOD magnitude between nearby sta-
tions, which may result from the errors discussed in the
Introduction Section. The merged AOD data (Fig. 1d) remove most
of these inconsistencies, by combining the spatial information of
the modeled AOD (Fig. 1c).

Fig. 1cee shows the multi-year average annual mean AOD dis-
tribution over East China from GEOS-Chem (Fig. 1c), the merged
dataset (Fig. 1d) and MODIS (Fig. 1e). Overall, there are several hot
spots indicated in all three datasets, namely the North China Plain
(black box in Fig. 1e), the Yangtze River Delta (blue box), the
Sichuan Basin (red box) and the Pearl River Delta (magenta box).
Annual mean AOD could reach 1 over these areas, a sign of signif-
icant pollution. There is an obvious low bias in GEOS-Chem AOD
(Fig. 1c), which is largely corrected by merging with visibility data
(Fig. 1d). To examine the correction more quantitatively, Table 1
lists the multi-year bias and Root Mean Square Error (RMSE) of

http://aeronet.gsfc.nasa.gov/


Fig. 2. Time series of the monthly average merged AOD (red) and AERONET data (black). The merged AOD are sampled from days with valid AERONET data. The vertical bars
indicate the standard deviations in any given month. The geographic information (longitude, latitude, altitude) of each site and the bias and correlation for the merged AOD relative
to AERONET are also given. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Table 1
Bias and RMSE between GEOS-Chem and MODIS, and between merged data and MODIS for the five regions.

Bias/RMSE East China North China Plain Yangtze River Delta Pearl River Delta Sichuan Basin

GEOS-Chem vs. MODIS �0.10/0.12 �0.15/0.18 �0.19/0.22 �0.20/0.24 �0.12/0.19
Merged vs. MODIS �0.04/0.11 �0.05/0.15 �0.14/0.15 �0.11/0.14 0.02/0.24
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GEOS-Chem and merged AOD relative to MODIS. The bias correc-
tion ranges from 0.05 (or 26%) for the Yangtze River Delta to 0.10 (or
67%) for the North China Plain. Averaged over East China, the low
bias is reduced from 0.10 to 0.04, a 60% correction.
The remaining low bias in the merged dataset, which is partic-

ularly significant over the North China Plain (Fig. 1d, e), may be
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because GEOS-Chem underestimates the AOD to AEC ratio by
concentrating aerosols near the ground too much (Ford and Heald,
2012; van Donkelaar et al., 2013). Based on a comparison with the
multi-year average CALIOP aerosol profiles, van Donkelaar et al.
(2013) showed that GEOS-Chem simulated summertime climato-
logical aerosol profiles underestimate the columnar to near-surface
aerosol ratio by up to 30% over the North China Plain. It is
conceivable to use themulti-year average CALIOP aerosol profiles to
adjust the climatological model profiles, with one complication
that the low spatio-temporal coverage of CALIOP (16 days for one
global mapping) leads to enhanced noises (van Donkelaar et al.,
2013) and also prevents a month-by-month adjustment necessary
for our merged dataset. On the other hand, our previous analysis for
2006 (Lin et al., 2014) showed that MODIS/Aqua slightly un-
derestimates ground-based AOD retrievals from AERONET, CAR-
SNET and CSHNET (bias ¼ �0.05 or �10%) with a high correlation
(R¼ 0.85) based on a point-to-point comparison across a total of 26
sites. This suggests that the uncertainties in MODIS data are un-
likely the main reason for the overall underestimate (relative to
MODIS) in the merged AOD dataset.

Aerosols over the study domain also exhibit distinct seasonal
variability, as shown in Fig. 3. Based on MODIS data, the AOD over
the North China Plain is higher in spring (MAM) and summer (JJA)
but lower in fall (SON) and winter (DJF). Similar patterns are found
for the Yangtze River Delta and Pearl River Delta. For the Sichuan
Basin, AOD peaks during the winter and spring seasons. These
general features were also found by previous satellite-based studies
(e.g., Li et al., 2003; Su et al., 2010; Luo et al., 2014). GEOS-Chem
roughly captures these seasonal variations, albeit with an overall
low bias. However, the spring time high AOD over most eastern and
southern regions and the Sichuan Basin is not well represented.
After merging with visibility AOD, the low bias is again effectively
reduced, especially over the east and the south. The merged data
show consistent seasonal variations with MODIS AOD over most
regions. For the Sichuan Basin, the fall season AOD is also increased
to a magnitude comparable with the spring time data, somehow
shifting the seasonal cycle there. This may be due to the year-round
high relative humidity and complex terrains there and will be
further illustrated below.

To examine the seasonal cycle for different regions and to
compare with MODIS in more detail, Fig. 4 shows the mean sea-
sonal cycle over the four hot spot regions (North China Plain,
Yangtze River Delta, Pearl River Delta and Sichuan Basin) and the
entire East China. The “r” values in the figure indicate the correla-
tion between the GEOS-Chem/merged AOD seasonal cycle with
that of MODIS. Fig. 4 shows that by combining with visibility AOD,
not only has the low bias been corrected in GEOS-Chem, but the
correlation with MODIS has also become much higher for most
regions. Both themerged andMODIS data show that over the North
China Plain and Yangtze River Delta, AOD peaks in spring-summer,
especially in June, while it reaches the lowest values in the winter
months, consistent with previous ground-based AOD analyses (Yu
et al., 2009; Wang et al., 2011b; Xia et al., 2013; Lin et al., 2014).
Over the Pearl River Delta, AOD is the highest in spring, especially in
March.

Fig. 4 shows no distinct seasonal cycle of AOD over the Sichuan
Basin. The correlation between the merged AOD and MODIS is low,
likely due to the seasonally invariant high relative humidity con-
dition there (Chen and Xie, 2013; Wang et al., 2013a), which
complicates the conversion from visibility to AOD as it requires an
accurate model representation of vertically-resolved aerosol hy-
groscopic growth. The complex terrain theremay also have reduced
the spatial representativeness of visibility measurements (Wang
et al., 2013a). These complications have also resulted in a low cor-
relation (0.3) between GEOS-Chem and MODIS AOD.
Finally, Fig. 5 compares the time series of the three monthly
datasets for the study period. This comparison better demonstrates
the effect of combing visibility and modeled AOD fields, by
improving the magnitude, seasonality and interannual variability.
For all East China, the merged AOD closely agrees with MODIS in
both magnitude and variability. Compared with GEOS-Chem AOD,
the merged data not only correct the bias but also reduce the phase
differences, resulting in a 0.9 correlation. The agreement is also
significantly improved for the North China Plain, Yangtze River
Delta and Pearl River Delta, with correlations well above 0.75. For
the Sichuan Basin, the AOD magnitude agrees better, although
there are still some mismatches in temporal variability. Over the
North China Plain and Yangtze River Delta, bothMODIS andmerged
data show growing AOD during 2005e2008 along with Chinese
economic growth (Lin et al., 2010), followed by a sharp decline in
2009 due to the economic downturn (Lin and McElroy, 2011) and
sulfur emission controls (Lu et al., 2011). The trends are broadly
consistent with previous aerosol trend studies (Boys et al., 2014; Lin
et al., 2013; Cheng et al., 2013; Gong et al., 2014).

In sum, the visibility-GEOS Chemmerged AOD dataset combines
the strengths of both components, corrects the low bias in GEOS-
Chem by 60% averaged over East China, and meanwhile well rep-
resents the spatial and temporal variability of aerosols over East
China. Next we will use a spectral analysis to further examine the
dominant modes of variability.

3.2. CPCA analysis

CPCA is a spectral technique to decomposing multiple multi-
dimensional datasets into several major modes of variability.
These modes represent the common variability in these datasets,
thus can be used on different measurements of the same parameter
to evaluate the consistency and discrepancy across the datasets. Li
et al. (2014) first introduced CPCA into AOD data inter-comparison
and proved the usefulness of this technique. Here we apply the
same analysis for cross-comparison between GEOS-Chem, merged
and MODIS AOD fields. Detailed mathematical description of the
method can be found in Li et al. (2014). Briefly, multiple datasets
with the same time span are first combined into one large data
matrix, then PCA is performed on the combined matrix to extract
the time series (PCs), and the PCs are finally projected back onto
each individual dataset to obtain the spatial pattern (EOFs). In this
way, each dataset has a spatial pattern while sharing a common
time series, thus comparison can be quantitatively performed on
the spatial patterns alone. An important note is that by combing
different datasets, we are assuming equal weights. This assumption
is suitable for the multiple AOD fields used here; however, caution
must be taken when combing datasets of different parameters.

CPCA is first performed on the full dataset combining MODIS
AOD, GEOS-Chem AOD and the merged AOD. It produces 96 modes
corresponding to 96 months in total, and Fig. 6 shows the variances
explained by the first 20 modes. Based on the sharp drop in vari-
ance from Mode 3 to Mode 4 and the small fractions of variance
explained by modes 4 and onwards, we retain the first three modes
for further analyses. Their spatial patterns and time series are dis-
played in Fig. 7. For the first two modes, the PCs both exhibit
distinct seasonal cycles, while the spatial patterns highlight
northern and southern East China, respectively, thus they represent
the seasonal variability over these two regions. PC 1 indicates that
AOD over northern East China (mostly the North China Plain) peaks
during the late spring to early summer, consistent with previous
results. The seasonal cycle for southern East China is less evident,
but is in general highest in spring and lowest in fall. Mode 3 cap-
tures a weak variability around the Yangtze River Delta region,
which has a rough semi-annual seasonal cycle with dual peaks in



Fig. 3. MODIS (top row), GEOS-Chem (middle row) and the merged (bottom row) AOD averaged for the four seasons: spring (MAM), summer (JJA), fall (SON) and winter (DJF).
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spring and winter. This mode could be amodulation of the seasonal
variability. Qualitatively, both GEOS-Chem and merged AOD agree
with MODIS in terms of spatial distribution. However, the merged
dataset still shows certain quantitative improvements compared
with GEOS-Chem. For example, in Mode 2, GEOS-Chem has a low
bias in southern East China, while inMode 3, it has a slight high bias
in the central-southern East China extending from Anhui to
Chongqing. The merged dataset is more coherent with MODIS over
these regions.

We continue to examine the interannual variability by per-
forming CPCA on the de-seasonalized (removal of multi-year
averaged seasonal cycle) dataset. Again based on the change of
variance explained curve (Fig. 6), we consider the first three modes
as dominant. Fig. 8 shows the first three modes representing the
interannual variability for all East China, northern East China
(mostly the North China Plain) and the Yangtze River Delta,
respectively. Similar to the above results, there is high overall
agreement across the three datasets. The insufficient variability in
GEOS-Chem Mode 1 has been greatly improved by the merged
dataset. PCs 1 and 3 reveal a positive trend until 2008, broadly
consistent with the aerosol trends over East China found by Boys
et al. (2014), Cheng et al. (2013) and Gong et al. (2014).
4. Discussions on sampling bias

It is well known that passive sensors such as MODIS can only
retrieve aerosol information in cloud free areas, as the high
reflectivity by clouds conceals any signal from aerosols. However,
visibility measurements are available under all sky conditions,
therefore in theory it contains more complete information than
MODIS. To investigate how large a bias cloud-free sampling would
introduce to MODIS AOD, we compare GEOS-Chem AOD with and
without sampling with MODIS data. Fig. 9aec shows that the
sampling with MODIS clearly results in an overall low bias in AOD
estimate, which could reach as high as 0.2 for many areas. The
MODIS sampling also leads to a similar bias in themerged AOD data
(Fig. 9d, e). The merged AOD (without MODIS sampling) is much
less susceptible to a sampling bias since data are available for ~86%
of days.

Another problem with MODIS, particularly over East China, is
that it tends to miss heavy pollution scenes. This is likely because
the reflectivity by aerosols is comparable to that of clouds under
these heavily polluted conditions and the retrieval algorithm
screened out these data as clouds. Fig. 10 shows an example on
January 9th, 2015, when there was a heavily polluted air mass



Fig. 4. Multi-year mean seasonal variability of AOD for the five representative regions. The r values in the parentheses denote the correlation between the corresponding time series
and MODIS. See Fig. 1e for region definitions.

Fig. 5. Monthly time series of the three AOD datasets for the five regions. The r values in the parentheses denote the correlation between the corresponding time series and MODIS.
See Fig. 1e for region definitions.
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Fig. 6. The variances explained by the first 20 modes of CPCA analysis of MODIS, GEOS-
Chem and the merged AOD datasets, without (black line) and with (grey line)
removing the seasonal cycle.
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covering East China extending from the Shandong Peninsula to the
Yangtze River Delta (red box in the true color image). However,
there is no AOD retrieval over this region in the level 2 MODIS AOD
product for the same scene (right panel). Another representative
example concerns the extreme pollution in January 2013 during
which month northern East China experienced very severe and
long-lasting pollution (Che et al., 2014; Sun et al., 2014). Here we
extend to January 2013 the GEOS-Chem simulation and aerosol
Fig. 7. The first three CPCA modes, with seasonality included. The first two modes represent
shows a semi-annual cycle of the Yangtze River Delta region. The three datasets qualitativel
data processing. Fig. 11 shows the monthly mean MODIS AOD and
visibility-GEOS Chem merged AOD for this month. We can see that
there is no MODIS retrieval for northern East China, especially the
most polluted regions of Hebei and Shandong Provinces, while the
merged dataset has more complete spatial information and reveals
the heavy pollution.

Currently there are no simple observation-based methods to
accurately quantify the quality of visibility-inferred AOD data under
cloudy or heavy pollution conditions. Qualitatively, one could use
ground-based particulate matter (PM) mass concentration mea-
surements (that are done under all sky conditions) to differentiate
various cloud and pollution situations for assessing visibility-
inferred AOD data. However, such assessment is complicated by
the different dependence of PM mass concentration, visibility and
AOD on meteorological conditions such as boundary layer mixing
andwater vapor content. Nonetheless, asMODIS data are limited by
cloud-free sampling and misclassified heavy pollution, visibility
converted AOD, especially when combined with model simula-
tions, offers potentially more complete aerosol information with
reasonable quality.
5. Summary

Visibility measurements could provide long-term aerosol in-
formation, thus are potentially valuable for climate studies. For
more complete coverage and better representation of spatial vari-
ability, we take advantage of a GEOS-Chem aerosol simulation and
develop a technique to merge visibility converted AOD with GEOS-
Chem AOD. Monthly mean data for the early afternoon (at the
MODIS/Aqua overpass time) are produced and analyzed. Compar-
isons with MODIS/Aqua AOD indicate that the merged dataset
largely corrects the bias in modeled AOD field. The agreement in
seasonal variability for northern and southern East China, respectively. The third mode
y agree while the merged data agrees better with MODIS, especially for Modes 1 and 2.



Fig. 8. The first three de-seasonalized CPCA modes, representing interannual variability. The merged dataset still agrees well with MODIS.

Fig. 9. Possible MODIS bias due to its cloud-free only sampling. Panel a shows GEOS-Chem AOD matched with MODIS observations, panel b is all GEOS-Chem AOD, and panel c is
their difference. Panels d and e show the merged AOD with and without correction for MODIS sampling, respectively. We can see that there is a low bias by as much as �0.2 due to
the MODIS sampling.
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spatial and temporal variability is also improved, especially over
the North China Plain and the south. Comparisons with AERONET
AOD data also show overall good consistency with a small bias and
high correlation.

Using the new merged dataset, we identify four major AOD
hot spots in East China, namely the North China Plain, the
Yangtze River Delta, the Pearl River Delta and the Sichuan Basin.
Most regions exhibit distinct seasonal variability. For the North
China Plain, AOD is the highest from late spring to early summer
and the lowest in winter. While for southern East China
(including the Pearl River Delta), AOD usually peaks in the early
spring season. These spatial and seasonal patterns are consistent
with many previous studies (e.g., Li et al., 2003; Yu et al., 2009;
Su et al., 2010; Wang et al., 2011b; Xia et al., 2013; Lin et al.,
2014; Luo et al., 2014). Interannually, the merged AOD over the
North China Plain and Yangtze River Delta show a growth until
2008 followed by a sharp decline in 2009, also consistent with
previous findings (Boys et al., 2014; Cheng et al., 2013; Gong
et al., 2014). These results indicate a correct representation of
AOD variability by the merged dataset.

The current study focuses on the recent decade when MODIS
data are available for comparison, as the major goal is to present
the new merged dataset and to evaluate its spatio-temporal
variability. The primary advantage of this dataset, however, is its
usefulness in studying long-term aerosol changes. Visibility
measurements started well before the satellite era, and GEOS-
Chem simulations with assimilated meteorological fields are
also possible since 1979. Therefore, we will next process the data
all through 1979, expand the study domain to worldwide loca-
tions, and use the data to examine the long-term aerosol trends.
This research will provide important insights into the role of
aerosols in the global and regional climate changes. Our data will
be available for public use at http://www.atmos.pku.edu.cn/acm/
acmProduct.html.

http://www.atmos.pku.edu.cn/acm/acmProduct.html
http://www.atmos.pku.edu.cn/acm/acmProduct.html


Fig. 10. MODIS true color image (left) and Level 2 AOD retrieval (right) for January 9th, 2015 over the North China Plain. The true color image shows heavy pollution spreading from
the Shandong Peninsula to the Yangtze River Delta (marked by red box). However, there is no AOD retrieval over land for this region.

Fig. 11. Monthly average MODIS AOD (left) and merged AOD (without correction for MODIS sampling, right) for January 2013. During this month, northern East China is known to
have experienced heavy pollution but MODIS does not have AOD retrievals, while merged dataset has more complete spatial information and shows the heavy pollution.
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